
Architectural-Level Synthesis

Giovanni De Micheli
Integrated Systems Laboratory

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed
© Giovanni De Micheli – All rights reserved

(c) Giovanni De Micheli 2

Module1

Objectives
Motivation
Compiling language models into abstract models
Behavioral-level optimization and program-level transformations

(c) Giovanni De Micheli 3

Synthesis

 Transform behavioral into structural view
 Architectural-level synthesis:

 Architectural abstraction level
 Determine macroscopic structure
 Example: major building blocks

 Logic-level synthesis:
 Logic abstraction level
 Determine microscopic structure
 Example: logic gate interconnection

(c) Giovanni De Micheli 4

Models and flows

LANGUAGE MODELS ABSTRACT MODELS

HDL

HDL

HDL

compilation

compilation

translation

Operations and dependencies
(Data-flow & sequencing

graphs)

FSMs – Logic functions
(State-diagrams & logic

networks)

Interconnected logic blocks
(Logic networks)

BE
HA

VI
O

RA
L

VI
EW

ST
RU

CT
UR

AL
 V

IE
W

AR
CH

IT
EC

TU
RA

L
LE

VE
L

LO
G

IC
 L

EV
EL

Physical design
(mask layout)

Verilog
VHDL

SystemC

Esterel
Statecharts

Schematics

GDS2

(c) Giovanni De Micheli 5

Example
Differential equation solver

diffeq {
read (x, y, u, dx, a) ;
repeat {

xl = x + dx;
ul = u – (3 . x . u . dx) – (3 . y . dx) ;
yl = y + u . dx ;
c = x < a ;
x = xl; u = ul; y = yl ;

until (c);
write (y)
}

(c) Giovanni De Micheli 6

Example

* ALU STEERING
&

MEMORY

CONTROL
UNIT

* ALU
STEERING

&
MEMORY

CONTROL
UNIT* ALU

(c) Giovanni De Micheli 7

Example

1 2 3 4 5 6 7 8

5

10

15

7
8

12
13

(2,2)
(2,1)

(1,2)

(1,1)

Area

Latency

X

(c) Giovanni De Micheli 8

Architectural-level synthesis motivation

 Raise input abstraction level
 Reduce specification of details
 Extend designer base
 Self-documenting design specifications
 Ease modifications and extensions

 Reduce design time

 Explore and optimize macroscopic structure:
 Series/parallel execution of operations

(c) Giovanni De Micheli 9

Architectural-level synthesis

 Translate HDL models into sequencing graphs

 Behavioral-level optimization:
 Optimize abstract models independently from the

implementation parameters

 Architectural synthesis and optimization:
 Create macroscopic structure:

 Data-path and control-unit

 Consider area and delay information of the implementation

(c) Giovanni De Micheli 10

Compilation and behavioral optimization

 Software compilation:
 Compile program into intermediate form
 Optimize intermediate form
 Generate target code for an architecture

 Hardware compilation:
 Compile HDL model into sequencing graph
 Optimize sequencing graph
 Generate gate-level interconnection for a cell library

(c) Giovanni De Micheli 11

Hardware and software compilation

lex parse optimization codegen

front-end Intermediate form back-end

lex parse behavioral
optimization

front-end Intermediate form back-end

a-synthesis
l-synthesis

l-binding

(c) Giovanni De Micheli 12

Compilation

 Front-end:
 Lexical and syntax analysis
 Parse-tree generation
 Macro-expansion
 Expansion of meta-variables

 Semantic analysis:
 Data-flow and control-flow analysis
 Type checking
 Resolve arithmetic and relational operators

a = p + q * rassignment

identifier expression

expressionidentifier

identifier identifier

a

=

+

*p

q r

(c) Giovanni De Micheli 13

Behavioral-level optimization

Semantic-preserving transformations aiming at
simplifying the model

Applied to parse-trees or during their generation

Taxonomy:
Data-flow based transformations
Control-flow based transformations

(c) Giovanni De Micheli 14

Data-flow based transformations

Tree-height reduction

Constant and variable propagation

Common sub-expression elimination

Dead-code elimination

Operator-strength reduction

Code motion

(c) Giovanni De Micheli 15

Tree-height reduction

 Applied to arithmetic expressions
 Goal:

 Split into two-operand expressions to exploit hardware
parallelism at best

 Techniques:
 Balance the expression tree
 Exploit commutativity, associativity and distributivity

(c) Giovanni De Micheli 16

Example of tree-height reduction using
commutativity and associativity

+

+

*

*+

+

a ab bc cd d

x = a + b * c + d → x = (a + d) + b * c

(c) Giovanni De Micheli 17

Example of tree-height reduction using distributivity

*

+

*

*

+

* *

* *

a ab bc cd de ea

x = a * (b * c * d + e) → x = a * b * c * d + a * e;

(c) Giovanni De Micheli 18

Examples of propagation

Constant propagation
a = 0; b = a + 1; c = 2 * b;
a = 0; b = 1; c = 2;

Variable propagation:
a = x; b = a + 1; c = 2 * x;
a = x; b = a + 1; c = 2 * a;

(c) Giovanni De Micheli 19

Sub-expression elimination

 Logic expressions:
 Performed by logic optimization
 Kernel-based methods

 Arithmetic expressions:
 Search isomorphic patterns in the parse trees
 Example:

a = x + y; b = a +1; c = x + y
a = x + y; b = a + 1; c = a;

(c) Giovanni De Micheli 20

Examples of other transformations

 Dead-code elimination:
a = x; b = x + 1; c = 2 * x;
a can be removed if not referenced

 Operator-strength reduction:
a = x2, b = 3 * x;
a = x * x; t = x << 1; b = x + t;

 Code motion:
for (i = 1; i < 100) { data[i] = 3 * x * y * input[i] }
t = 3 * x * y; for (i = 1; i < 100) { data[i] = t * input[i] }

(c) Giovanni De Micheli 21

Control-flow based transformations

Model expansion

Conditional expansion

Loop expansion

(c) Giovanni De Micheli 22

Model expansion

 Expand subroutine
 Flatten hierarchy
 Expand scope of other optimization techniques

 Problematic when model is called more than once
 Example:

x = a + b; y = a * b; z = foo (x , y);
foo(p,q) { t=q - p; return (t); }
By expanding foo:
x = a + b; y = a*b; z = y – x;

(c) Giovanni De Micheli 23

Conditional expansion

 Transform conditional into parallel execution with test at
the end

 Useful when test depends on late signals
 May preclude hardware sharing
 Always useful for logic expressions
 Example:

y = ab; if (a) {x = b + d; } else { x = bd; }
 Can be expanded to: x = a (b + d) + a’bd
 And simplified as: y = ab; x = y + d (a + b)

(c) Giovanni De Micheli 24

Loop expansion

 Applicable to loops with data-independent exit conditions
 Useful to expand scope of other optimization techniques
 Problematic when loop has many iterations
 Example:

 x = 0; for (i = 1; i ≤ 3; i ++) { x = x + i; }
 Expanded to:

 x = 0; x = x + 1; x = x + 2; x = x + 3

(c) Giovanni De Micheli 25

Module2

Objectives
Architectural optimization
Scheduling, resource sharing, estimation

(c) Giovanni De Micheli 26

Architectural synthesis and optimization

 Synthesize macroscopic structure in terms of building-
blocks

 Explore area/performance trade-off:
 maximize performance subject to area constraints
 minimize area subject to performance constraints

 Determine an optimal implementation

 Create logic model for data-path and control

(c) Giovanni De Micheli 27

Design space and objectives

 Design space:
 Set of all feasible implementations

 Implementation parameters:
 Area
 Performance:

 Cycle-time
 Latency
 Throughput (for pipelined implementations)

 Power consumption

(c) Giovanni De Micheli 28

Design evaluation space

Area

Area

Area

Latency

Latency

Latency

Latency
Max

Area
Max

Cycl
e-t

ime

(c) Giovanni De Micheli 29

Hardware modeling

Circuit behavior:
Sequencing graphs

Building blocks:
Resources

Constraints:
Timing and resource usage

(c) Giovanni De Micheli 30

Resources

 Functional resources:
 Perform operations on data
 Example: arithmetic and logic blocks

 Storage resources:
 Store data
 Example: memory and registers

 Interface resources:
 Example: busses and ports

(c) Giovanni De Micheli 31

Resources and circuit families

Resource-dominated circuits
Area and performance depend on few, well-characterized

blocks
Example: DSP circuits

Non resource-dominated circuits
Area and performance are strongly influenced by sparse logic,

control and wiring
Example: some ASIC circuits

(c) Giovanni De Micheli 32

Implementation constraints

Timing constraints:
Cycle-time
Latency of a set of operations
Time spacing between operation pairs

Resource constraints:
Resource usage (or allocation)
Partial binding

(c) Giovanni De Micheli 33

Synthesis in the temporal domain

Scheduling:

Associate a start-time with each operation
Determine latency and parallelism of the implementation

Scheduled sequencing graph:

Sequencing graph with start-time annotation

(c) Giovanni De Micheli 34

Example

* * + <

-

-

* * * * +

NOP

NOP

0

1 2

3

4

5

6

7

8

9

10

11

n

TIME 1

TIME 2

TIME 3

TIME 4

(c) Giovanni De Micheli 35

Example 2

*

*

+

<

-

-

* *

*

*

+

NOP

NOP

0

1 2

3

4

5

6

7
8

9

10

11

n

TIME 1

TIME 2

TIME 3

TIME 4

(c) Giovanni De Micheli 36

Synthesis in the spatial domain

 Binding:

 Associate a resource with each operation with the same type
 Determine the area of the implementation

 Sharing:

 Bind a resource to more than one operation
 Operations must not execute concurrently

 Bound sequencing graph:

 Sequencing graph with resource annotation

(c) Giovanni De Micheli 37

Example

* * + <

-

-

* * * * +

NOP

NOP

0

1 2

3

4

5

6

7

8

9

10

11

n

TIME 1

TIME 2

TIME 3

TIME 4

(1,1) (1,2) (1,3) (1,4) (2,2)

(2,1)

(c) Giovanni De Micheli 38

Estimation
 Resource-dominated circuits

 Area = sum of the area of the resources bound to the
operations
 Determined by binding

 Latency = start time of the sink operation (minus start time
of the source operation)
 Determined by scheduling

 Non resource-dominated circuits
 Area also affected by:

 Registers, steering logic, wiring and control
 Cycle-time also affected by:

 Steering logic, wiring and (possibly) control

(c) Giovanni De Micheli 39

Approaches to architectural optimization

Multiple-criteria optimization problem:
Area, latency, cycle-time

Determine Pareto optimal points:
 Implementations such that no other has all parameters with

inferior values

Draw trade-off curves:
Discontinuous and highly nonlinear

(c) Giovanni De Micheli 40

Area-latency trade-off

 Rationale:
 Cycle-time dictated by system constraints

 Resource-dominated circuits:
 Area is determined by resource usage

 Approaches:
 Schedule for minimum latency under resource usage

constraints
 Schedule for minimum resource usage under latency

constraints
 for varying cycle-time constraints

(c) Giovanni De Micheli 41

Area/latency trade-off

1 2 3 4 5 6 7 8

5

10

15

7
8

12
13

(3,2)

(2,1)

(3,1)

Area

Latency

20

18
17

30

40

(2,2)
(2,1)

(1,2)

(1,1)

Cycle-tim
e

X

(c) Giovanni De Micheli 42

Summary

Behavioral optimization:
Create abstract models from HDL models
Optimize models without considering implementation parameters

Architectural synthesis and optimization
Consider resource parameters
Multiple-criteria optimization problem:

 area, latency, cycle-time

