Architectural-Level Synthesis

Giovanni De Micheli
Integrated Systems Laboratory

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli - All rights reserved

Module1

¢ Objectives
A Motivation
A Compiling language models into abstract models

A Behavioral-level optimization and program-level transformations

(c) Giovanni De Micheli 2

Synthesis

¢ Transform behavioral into structural view

¢ Architectural-level synthesis:
A Architectural abstraction level
A Determine macroscopic structure
A Example: major building blocks

¢ Logic-level synthesis:
A Logic abstraction level
A Determine microscopic structure
A Example: logic gate interconnection

(c) Giovanni De Micheli

Verilog
VHDL
SystemC

BEHAVIORAL VIEW

Esterel
Statecharts

Schematics

STRUCTURAL VIEW

(c) Giovanni De Micheli

Models and flows

ARCHITECTURAL LEVEL

LANGUAGE MODELS ABSTRACT MODELS
compilation Operations and dependencies
HDL > -
(Data-flow & sequencing
graphs)
4
HDL compilation > FSMs — Logic functions
(State-diagrams & logic
networks)
A
HDL)< translation > Interconnected logic blocks

(Logic networks)

A

A

A

A

LOGIC LEVEL

Physical design

(mask

layout)

Example

Differential equation solver

diffeq {

read (x, y, u, dx, a) ;

repeat {
xl=x+dx;
ul=u-(3-x-u-dx)-(3 y-dx);
yl=y+u-dx;
c=x<a;
x=xl;u=ul;y=yl;

until (¢);

write (y)

}

(c) Giovanni De Micheli 5

Example

CONTROL
UNIT

* ALU STEERING <
& >
MEMORY
A A
v'Y v Vv A 4 i
STEERING
* ALU * ALU &
MEMORY

(c) Giovanni De Micheli

A 4

CONTROL
UNIT

Example

Area
y
15 |
- (2,2)
LE- T [L (2,1)
12—~ ——————— T———
— |
10 4 ! |
41 I |
| !2)
T s —
LA | | (1)
5 | | | !
1 | | |
| ' |
A1 I I |
4 | : | Latency
| | | | | | | | .
| | | | | | | | '
1 2 3 4 5 6 7 8

(c) Giovanni De Micheli

Architectural-level synthesis motivation

¢ Raise input abstraction level

A Reduce specification of details
A Extend designer base
A Self-documenting design specifications

A Ease modifications and extensions

¢ Reduce design time

¢ Explore and optimize macroscopic structure:

A Series/parallel execution of operations

(c) Giovanni De Micheli

Architectural-level synthesis

¢ Translate HDL models into sequencing graphs

¢ Behavioral-level optimization:

A Optimize abstract models independently from the
implementation parameters

¢ Architectural synthesis and optimization:

A Create macroscopic structure:

v Data-path and control-unit

A Consider area and delay information of the implementation

(c) Giovanni De Micheli

Compilation and behavioral optimization

¢ Software compilation:

A Compile program into intermediate form
A Optimize intermediate form

A Generate target code for an architecture

¢ Hardware compilation:

A Compile HDL model into sequencing graph
A Optimize sequencing graph

A Generate gate-level interconnection for a cell library

(c) Giovanni De Micheli

10

Hardware and software compilation

Intermediate form

A 4

\ 4

optimization

back-end

Intermediate form

front-end
' lex > parse
front-end
' lex > parse
(c) Giovanni De Micheli

behavioral
optimization

A 4

codegen

back-end

\ 4

ﬁsynthesis
I-synthesis|

I-binding

11

Compilation

¢ Front-end: et asprqrr
. . i T expression
A Lexical and syntax analysis | '3 R
. identifier expression
A Parse-tree generation P
. identifier identifier
A Macro-expansion q r

A Expansion of meta-variables

¢ Semantic analysis:

A Data-flow and control-flow analysis
A Type checking

A Resolve arithmetic and relational operators

(c) Giovanni De Micheli 12

Behavioral-level optimization

¢ Semantic-preserving transformations aiming at
simplifying the model

¢ Applied to parse-trees or during their generation

¢ Taxonomy:

A Data-flow based transformations

A Control-flow based transformations

(c) Giovanni De Micheli

13

Data-flow based transformations

¢ Tree-height reduction

¢ Constant and variable propagation
¢ Common sub-expression elimination
¢ Dead-code elimination

¢ Operator-strength reduction

¢ Code motion

(c) Giovanni De Micheli

14

Tree-height reduction

¢ Applied to arithmetic expressions

¢ Goal:

A Split into two-operand expressions to exploit hardware
parallelism at best

¢ Techniques:

A Balance the expression tree
A Exploit commutativity, associativity and distributivity

(c) Giovanni De Micheli

15

Example of tree-height reduction using
commutativity and associativity

B A

x=a+b*c+d—>x=(a+d)+b*c

(c) Giovanni De Micheli 16

Example of tree-height reduction using distributivity

s
AV

b c d e a b ¢ d a

x=a*(b*c*d+e)—>x=a*b*c*d+a*e;

(c) Giovanni De Micheli 17

Examples of propagation

¢ Constant propagation
a=0; b=a+1, c=2-b;
a=0; b=1; c=2;

¢ Variable propagation:
a=x; b=a+1;, c=2+x;

a=x; b=a+1;, c=2-a;

(c) Giovanni De Micheli

18

Sub-expression elimination

¢ Logic expressions:

A Performed by logic optimization

A Kernel-based methods

¢ Arithmetic expressions:

A Search isomorphic patterns in the parse trees

A Example:
a=x+y, b=a+1; c=x+y
a=x+y;, b=a+1; c=a;

(c) Giovanni De Micheli

19

Examples of other transformations

¢ Dead-code elimination:
a=xX;b=x+1;c=2-x;
a can be removed if not referenced
¢ Operator-strength reduction:
a=x% b=3-x;
a=Xx*X; t=x<<1;b=x+t;
¢ Code motion:
for (i=1;i1<100) { data[i] =3 -x*y ~input[i] }
t=3-x-y;for(i=1;i<100){ data[i] =t -input[i] }

(c) Giovanni De Micheli

20

Control-flow based transformations

¢ Model expansion
+ Conditional expansion

¢ Loop expansion

(c) Giovanni De Micheli

21

Model expansion

¢ Expand subroutine

A Flatten hierarchy
A Expand scope of other optimization techniques

¢ Problematic when model is called more than once
¢ Example:

Xx=atbh; y=a-h;z=foo(x,y);

foo(p,q) { t=q - p; return (t); }

By expanding foo:

X=atbh;y=a'b;z=y-x;

(c) Giovanni De Micheli

22

Conditional expansion

¢ Transform conditional into parallel execution with test at
the end

¢ Useful when test depends on late signals
¢ May preclude hardware sharing
¢ Always useful for logic expressions
¢ Example:
y=ab;if(a) {x=b+d;}else{x=hd;}
A Can be expandedto: x=a (b +d) +a’ bd
A And simplified as:y=ab;x=y+d(a+b)

(c) Giovanni De Micheli 23

Loop expansion

¢ Applicable to loops with data-independent exit conditions
¢ Useful to expand scope of other optimization techniques
¢ Problematic when loop has many iterations
¢ Example:

x=0;for(i=1;is3;i++) {x=x+1;}
¢ Expanded to:

X=0; x=x+1; x=x+2; x=x+3

(c) Giovanni De Micheli 24

Module2

¢ Objectives
A Architectural optimization

A Scheduling, resource sharing, estimation

(c) Giovanni De Micheli

25

Architectural synthesis and optimization

¢ Synthesize macroscopic structure in terms of building-
blocks

¢ Explore area/performance trade-off:

A maximize performance subject to area constraints

A minimize area subject to performance constraints

¢ Determine an optimal implementation

¢ Create logic model for data-path and control

(c) Giovanni De Micheli 26

Design space and objectives

¢ Design space:

A Set of all feasible implementations

¢ Implementation parameters:

A Area

A Performance:
v Cycle-time
v Latency
v Throughput (for pipelined implementations)

A Power consumption

(c) Giovanni De Micheli

27

Design evaluation space

Area A
Area
1+
Area 4
]
Area
Max

Latency

>

Latency

[
>

Latency

(c) Giovanni De Micheli

Latency
Max

28

Hardware modeling

¢ Circuit behavior:

A Sequencing graphs

¢ Building blocks:

AResources

¢ Constraints:

ATiming and resource usage

(c) Giovanni De Micheli

29

Resources

¢ Functional resources:

A Perform operations on data
A Example: arithmetic and logic blocks

¢ Storage resources:
A Store data
A Example: memory and registers

¢ Interface resources:
A Example: busses and ports

(c) Giovanni De Micheli

30

Resources and circuit families

& Resource-dominated circuits

A Area and performance depend on few, well-characterized
blocks

A Example: DSP circuits

¢ Non resource-dominated circuits

A Area and performance are strongly influenced by sparse logic,
control and wiring

A Example: some ASIC circuits

(c) Giovanni De Micheli 31

Implementation constraints

¢ Timing constraints:
ACycle-time
ALatency of a set of operations

A Time spacing between operation pairs

¢ Resource constraints:

A Resource usage (or allocation)

A Partial binding

(c) Giovanni De Micheli

32

Synthesis in the temporal domain

& Scheduling:

A Associate a start-time with each operation

ADetermine latency and parallelism of the implementation

& Scheduled sequencing graph:

A Sequencing graph with start-time annotation

(c) Giovanni De Micheli

33

Example

—_——

- N
4/ Nop 9
-
— ~
/// //\\ ! \\\
-
/// // _/&\ \\\
P // / < \\
- - / ~ ~<
- - / N ~
- - ~ ~
— -~ ~
- - / N ~<
- ~ ~ ~
- - / N ~
- - / N >~

< 2 6 >~ 8 10
TIME 1
7 9 11
TIME 2
/ / /

// //
/
4 Y p
TIME 3 / -
/ //
// 7
/ /
// //
/
5 / -
TIME 4 / /
/ /
/ e
\\ / Y
~
\\\ / //
S~ ,_i /
n
[NOP)
\ /
\ /
~ -~

(c) Giovanni De Micheli 34

Example 2

PO 0
\
_-4 NOP §
- -~ _//‘ >~

1 2 / \ > 10
TIME 1 / \
/ \
\
/ \ |

, \
PEP .
TIME 2 \
\

/

TIME 3 Q‘l </>/7 8

5
TIME 4
’ e
\\\ // ////
\\ //
N // ////
~o _Z _ -
~N.- ~-
/ \ n
I NOP |
/
\\~//

(c) Giovanni De Micheli

35

Synthesis in the spatial domain

¢ Binding:
A Associate a resource with each operation with the same type

A Determine the area of the implementation

¢ Sharing:
A Bind a resource to more than one operation

A Operations must not execute concurrently

¢ Bound sequencing graph:

A Sequencing graph with resource annotation

(c) Giovanni De Micheli

36

TIME 3

Example

TIME 4

(c) Giovanni De Micheli

37

Estimation

& Resource-dominated circuits

A Area = sum of the area of the resources bound to the
operations

v Determined by binding

A Latency = start time of the sink operation (minus start time
of the source operation)

v Determined by scheduling
& Non resource-dominated circuits

A Area also affected by:
v Registers, steering logic, wiring and control

A Cycle-time also affected by:
v Steering logic, wiring and (possibly) control

(c) Giovanni De Micheli

38

Approaches to architectural optimization

¢ Multiple-criteria optimization problem:

AArea, latency, cycle-time

¢ Determine Pareto optimal points:

Almplementations such that no other has all parameters with
inferior values

¢ Draw trade-off curves:

ADiscontinuous and highly nonlinear

(c) Giovanni De Micheli

39

Area-latency trade-off

¢ Rationale:

A Cycle-time dictated by system constraints

¢ Resource-dominated circuits:

A Area is determined by resource usage
¢ Approaches:

A Schedule for minimum latency under resource usage
constraints

A Schedule for minimum resource usage under latency
constraints
v for varying cycle-time constraints

(c) Giovanni De Micheli

40

Areallatency trade-off

@o\\.
5\¢
”
8 =
S L I—
] A
(|
|1
|1
(|
|1
= B g
Qxillllpl_ ||||||||||| 8
|| L
_ |1
[|1
| (|
o Elrocssaoaas=) .
ol || S
(| (|
|1 —1
I I U,T
|| || ol
|1 [
|1 [W _
(| | B T T T T T T T T T -
|1 I _ _
|1 =I
1 S [
I 3 I A |
(| | | |
(| | | |
|1 [_ _
I _ _ _ g
(| | | | M
|1 _ [[
Lol Lol _
4,4 _
L™ _
I _ |
I (Y |
I | |
] | | -
N |
W Y
4, .
I I s 1, -T-
_ ‘P ., ‘P %
| [,
I (Y | ™
| g _ 4
I | |
|| | Y
O < | N T Y U N T O Y I O
o ¢ | L L D D N
< (=] E 10 Y o ©o ~ I
N - -

41

(c) Giovanni De Micheli

Summary

¢ Behavioral optimization:
A Create abstract models from HDL models

A Optimize models without considering implementation parameters

Architectural synthesis and optimization

A Consider resource parameters

A Multiple-criteria optimization problem:
v area, latency, cycle-time

(c) Giovanni De Micheli 42

