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Module1

¢ Objectives
A Motivation
A Compiling language models into abstract models

A Behavioral-level optimization and program-level transformations
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Synthesis

¢ Transform behavioral into structural view

¢ Architectural-level synthesis:
A Architectural abstraction level
A Determine macroscopic structure
A Example: major building blocks

¢ Logic-level synthesis:
A Logic abstraction level
A Determine microscopic structure
A Example: logic gate interconnection
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Example

Differential equation solver

diffeq {

read (x, y, u, dx, a ) ;

repeat {
xl=x+dx;
ul=u-(3-x-u-dx)-(3 y-dx);
yl=y+u-dx;
c=x<a;
x=xl;u=ul;y=yl;

until ( ¢ );

write (y)

}
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Architectural-level synthesis motivation

¢ Raise input abstraction level

A Reduce specification of details
A Extend designer base
A Self-documenting design specifications

A Ease modifications and extensions

¢ Reduce design time

¢ Explore and optimize macroscopic structure:

A Series/parallel execution of operations
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Architectural-level synthesis

¢ Translate HDL models into sequencing graphs

¢ Behavioral-level optimization:

A Optimize abstract models independently from the
implementation parameters

¢ Architectural synthesis and optimization:

A Create macroscopic structure:

v Data-path and control-unit

A Consider area and delay information of the implementation
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Compilation and behavioral optimization

¢ Software compilation:

A Compile program into intermediate form
A Optimize intermediate form

A Generate target code for an architecture

¢ Hardware compilation:

A Compile HDL model into sequencing graph
A Optimize sequencing graph

A Generate gate-level interconnection for a cell library
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Hardware and software compilation
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Compilation

¢ Front-end: et asprqrr
. . i T expression
A Lexical and syntax analysis | '3 R
. identifier expression
A Parse-tree generation P
. identifier identifier
A Macro-expansion q r

A Expansion of meta-variables

¢ Semantic analysis:

A Data-flow and control-flow analysis
A Type checking

A Resolve arithmetic and relational operators
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Behavioral-level optimization

¢ Semantic-preserving transformations aiming at
simplifying the model

¢ Applied to parse-trees or during their generation

¢ Taxonomy:

A Data-flow based transformations

A Control-flow based transformations
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Data-flow based transformations

¢ Tree-height reduction

¢ Constant and variable propagation
¢ Common sub-expression elimination
¢ Dead-code elimination

¢ Operator-strength reduction

¢ Code motion
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Tree-height reduction

¢ Applied to arithmetic expressions

¢ Goal:

A Split into two-operand expressions to exploit hardware
parallelism at best

¢ Techniques:

A Balance the expression tree
A Exploit commutativity, associativity and distributivity
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Example of tree-height reduction using
commutativity and associativity

B A

x=a+b*c+d—>x=(a+d)+b*c
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Example of tree-height reduction using distributivity

s
AV

b c d e a b ¢ d a

x=a*(b*c*d+e)—>x=a*b*c*d+a*e;
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Examples of propagation

¢ Constant propagation
a=0; b=a+1, c=2-b;
a=0; b=1; c=2;

¢ Variable propagation:
a=x; b=a+1;, c=2+x;

a=x; b=a+1;, c=2-a;
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Sub-expression elimination

¢ Logic expressions:

A Performed by logic optimization

A Kernel-based methods

¢ Arithmetic expressions:

A Search isomorphic patterns in the parse trees

A Example:
a=x+y, b=a+1; c=x+y
a=x+y;, b=a+1; c=a;
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Examples of other transformations

¢ Dead-code elimination:
a=xX;b=x+1;c=2-x;
a can be removed if not referenced
¢ Operator-strength reduction:
a=x% b=3-x;
a=Xx*X; t=x<<1;b=x+t;
¢ Code motion:
for (i=1;i1<100) { data[i] =3 -x*y ~input[i] }
t=3-x-y;for(i=1;i<100){ data[i] =t -input[i] }
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Control-flow based transformations

¢ Model expansion
+ Conditional expansion

¢ Loop expansion
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Model expansion

¢ Expand subroutine

A Flatten hierarchy
A Expand scope of other optimization techniques

¢ Problematic when model is called more than once
¢ Example:

Xx=atbh; y=a-h;z=foo(x,y);

foo(p,q) { t=q - p; return (t); }

By expanding foo:

X=atbh;y=a'b;z=y-x;
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Conditional expansion

¢ Transform conditional into parallel execution with test at
the end

¢ Useful when test depends on late signals
¢ May preclude hardware sharing
¢ Always useful for logic expressions
¢ Example:
y=ab;if(a) {x=b+d;}else{x=hd;}
A Can be expandedto: x=a (b +d) +a’ bd
A And simplified as:y=ab;x=y+d(a+b)
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Loop expansion

¢ Applicable to loops with data-independent exit conditions
¢ Useful to expand scope of other optimization techniques
¢ Problematic when loop has many iterations
¢ Example:

x=0;for(i=1;is3;i++) {x=x+1;}
¢ Expanded to:

X=0; x=x+1; x=x+2; x=x+3
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Module2

¢ Objectives
A Architectural optimization

A Scheduling, resource sharing, estimation
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Architectural synthesis and optimization

¢ Synthesize macroscopic structure in terms of building-
blocks

¢ Explore area/performance trade-off:

A maximize performance subject to area constraints

A minimize area subject to performance constraints

¢ Determine an optimal implementation

¢ Create logic model for data-path and control
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Design space and objectives

¢ Design space:

A Set of all feasible implementations

¢ Implementation parameters:

A Area

A Performance:
v Cycle-time
v Latency
v Throughput (for pipelined implementations)

A Power consumption
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Design evaluation space
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Hardware modeling

¢ Circuit behavior:

A Sequencing graphs

¢ Building blocks:

AResources

¢ Constraints:

ATiming and resource usage
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Resources

¢ Functional resources:

A Perform operations on data
A Example: arithmetic and logic blocks

¢ Storage resources:
A Store data
A Example: memory and registers

¢ Interface resources:
A Example: busses and ports
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Resources and circuit families

& Resource-dominated circuits

A Area and performance depend on few, well-characterized
blocks

A Example: DSP circuits

¢ Non resource-dominated circuits

A Area and performance are strongly influenced by sparse logic,
control and wiring

A Example: some ASIC circuits

(c) Giovanni De Micheli 31



Implementation constraints

¢ Timing constraints:
ACycle-time
ALatency of a set of operations

A Time spacing between operation pairs

¢ Resource constraints:

A Resource usage (or allocation)

A Partial binding
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Synthesis in the temporal domain

& Scheduling:

A Associate a start-time with each operation

ADetermine latency and parallelism of the implementation

& Scheduled sequencing graph:

A Sequencing graph with start-time annotation
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Example 2
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Synthesis in the spatial domain

¢ Binding:
A Associate a resource with each operation with the same type

A Determine the area of the implementation

¢ Sharing:
A Bind a resource to more than one operation

A Operations must not execute concurrently

¢ Bound sequencing graph:

A Sequencing graph with resource annotation
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TIME 3

Example

TIME 4

(c) Giovanni De Micheli

37



Estimation

& Resource-dominated circuits

A Area = sum of the area of the resources bound to the
operations

v Determined by binding

A Latency = start time of the sink operation (minus start time
of the source operation)

v Determined by scheduling
& Non resource-dominated circuits

A Area also affected by:
v Registers, steering logic, wiring and control

A Cycle-time also affected by:
v Steering logic, wiring and (possibly) control
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Approaches to architectural optimization

¢ Multiple-criteria optimization problem:

AArea, latency, cycle-time

¢ Determine Pareto optimal points:

Almplementations such that no other has all parameters with
inferior values

¢ Draw trade-off curves:

ADiscontinuous and highly nonlinear
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Area-latency trade-off

¢ Rationale:

A Cycle-time dictated by system constraints

¢ Resource-dominated circuits:

A Area is determined by resource usage
¢ Approaches:

A Schedule for minimum latency under resource usage
constraints

A Schedule for minimum resource usage under latency
constraints
v for varying cycle-time constraints
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Areallatency trade-off
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Summary

¢ Behavioral optimization:
A Create abstract models from HDL models

A Optimize models without considering implementation parameters

# Architectural synthesis and optimization

A Consider resource parameters

A Multiple-criteria optimization problem:
v area, latency, cycle-time
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